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A Rectangular Constellation-Based
Blind Equalization Technique

E. Satorius!

Blind equalization techniques have been developed over the past three decades
that estimate and equalize communication channels without requiring training se-
quences and without channel knowledge. This article presents a new blind equal-
ization algorithm with particular relevance to large-order, square or rectangular
constellations. Comparisons with standard blind equalization methods are also
presented.

l. Introduction

In 1999, we developed a new algorithm particularly suitable for the blind equalization of large-order,
rectangular signal constellations, e.g., quadrature amplitude modulation (QAM), distorted by multipath
channels and carrier offsets [1]. Since this algorithm was never fully documented, we present in this
article a summary of the algorithm, beginning in this section with an overview of blind equalization. In
particular, blind equalization provides for the recovery of unknown signals via a finite-dimensional, linear
projection of a channel output data vector. In component form, we have

L—-1
Zn = Z Wi Yn—i (1)
=0

where the w; denote the L projection (blind equalizer) coeflicients and the z, are the complex output
samples from the blind adaptive equalizer. The y,, denote complex (baseband) samples from the unknown
communication channel, which can in turn be expressed as a convolution of the sampled channel impulse
response, f;, with an unknown sequence of independent and identically distributed (iid) complex source
symbols, ay:

Yn = Z fitn_s (2)

The blind adaptive filter coefficients w; are derived using only the available channel output data, without
knowledge of either the transmitted signal waveform or the linear channel.
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Approaches to blind equalization can be broadly categorized into four different classes: (1) property
restoral techniques wherein the projection coefficients are derived via the maximization (or minimization)
of various cost criteria [2-7]; (b) direct channel coefficient estimation techniques that utilize higher-order
statistics (i.e., cumulants) [8]; (c) maximum-likelihood estimation techniques wherein both the channel
and the unknown signal are estimated simultaneously [9]; and (d) direct channel coefficient estimation
techniques that exploit cyclostationary properties of the transmitted waveform [10]. The first class of
techniques is perhaps the broadest since it can incorporate a wide range of cost criteria. Furthermore,
this class of techniques is the oldest and consequently has been studied extensively. The majority of this
analysis has dealt with the convergence of time-recursive, gradient-based algorithms for achieving the
maximum/minimum of the cost functions, such as the Godard (or constant modulus) algorithm [4,5,11].
Our new algorithm as presented in the following section falls in this first class.

Il. Blind Equalization Algorithm for Rectangular Constellations

Here we present a new blind equalization technique based on the first class of techniques, which
involves the maximization (or minimization) of a cost function. In particular, we start with a new blind
equalization cost function that arises from a uniformly most powerful (UMP) scale invariant hypothesis
test between factored (rectangular) generalized Gaussian distributions as discovered in [6]:
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where the z, are the complex equalizer output time samples as defined in Eq. (1) (24, and z,, denote
the real and imaginary parts, respectively, of z,). As s — oo, O2%, .., approximates the limiting cost

function [6]:
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In implementing a gradient update algorithm for maximizing Eq. (3) (either batch or time recursive),
we need to compute the complex gradient of O?, ., with respect to the complex equalizer taps. Carrying
out this differentiation yields
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and (-) ;- denotes an N-sample time average. Using Eqgs. (5) and (6), we can now iteratively compute the
optimal equalizer taps that maximize Eq. (3) via
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as follows:

(1) Start with a batch collection of N data samples, y,,, and initial equalizer weights.
(2) Given the initial equalizer weights, compute the equalizer outputs, z,.

(3) Compute a new set of equalizer weights from Egs. (5) through (7) and repeat until con-
vergence.

Alternatively, we can derive a time-recursive algorithm by replacing the time average in Eq. (5) with
the instantaneous estimate
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and replacing the time-average operations (-), in Eq. (6) with simple one-pole, lowpass recursive esti-
mates.

Equations (7) and (8) comprise the time-recursive algorithm for updating the equalizer weights:
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where 02, = {(I/N) Zszl |zk\2} + {(1/N) Zszl (|zak|® + |zyk\s)} and again the time averages

(-) ;v are computed with simple one-pole, lowpass recursive estimates.

Alternatively, we can simplify the computations in Eq. (9) considerably by replacing the (), with
true statistical expectations under the assumption of perfect equalization, i.e., when z = a. Under this
assumption, Eq. (9) reduces to

wk(n + 1) = wk(n) - ﬂrect { (|Zmn|872 Zxn +.7 |Zyn|572 Zyn) - ROrect : Zn} y:;,—k (10)

where we define the normalized step size as Brect =t - {E|a\2}1/2 JAE (|laz|® + |ay|5)}1/s JE (lag|® + |ay|®)
and the constant as Rorect=2F|az|*/F|a|? (a; and a, denote the real and imaginary parts of the complex
source symbols, a). As in the case of the constant modulus algorithm (CMA) [4,5], this constant controls
the scale of the equalized constellation at convergence. Equation (10) represents our new rectangular
constellation-based blind equalization (RECBEQ) algorithm. It converges rapidly for input rectangular
constellations distorted by multipath.

lll. Asymptotic Performance Analysis

Previously [12], we have analyzed the asymptotic? performance of RECBEQ in terms of the achievable,
average intersymbol interference, 157, near convergence [3]:

2As N — oo in Eq. (3) or, equivalently, the steady-state performance of Eq. (10).
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where ¢,, denotes the combined channel /equalizer impulse response coefficients, i.e.,

L—-1
Cn = Z W fn—i (12)
=0

Ideally, we want the equalizer to remove all ISI, in which case IST = 0. In [12], it was shown that

L-1

where
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and v = E [|af?] /{E [|as|® + |a,[*]} and 7o = E [|a|?] /E [Jas|® + |ay|*]. A represents an asymptotic
figure of merit for blind equalizers—the smaller the A, the better. It can be derived for a wide class of
cost functions [12], including the important constant modulus cost function O%:
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which forms the basis for CMA [5,6].

Plots of A versus s are presented in Fig. 1 for both O?

S Trec
16-QAM and 64-QAM. Although A goes to zero as s — oo in all cases, the superior performance of O7 ...,
over O? for these constellations is clearly observed. Thus, based on this asymptotic precision analysis, we
would recommend the utilization of O?,, for blindly restoring square constellations (whereas O? should
be used to restore circularly symmetric constellations [12]).

. and O? (labeled as O7=?2), corresponding to
2

IV. Extensions to Residual Frequency Offsets

When residual carrier offsets are present, the system must also include a data-directed phase-locked
loop (PLL). A conventional system architecture [13], incorporating the CMA blind equalizer and data-
aided PLL, is depicted in Fig. 2. The equalizer output is phase corrected (“de-rotated”) by the PLL
output, which is driven by symbol decisions based on the phase-corrected equalizer output. The viability
of this architecture is based on the fact that the CMA blind equalizer algorithm is not affected by phase
rotations of the input signal constellation and thus phase correction can occur after the CMA equalizer.
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Fig. 1. Asymptotic figure of merit for 16-QAM and
64-QAM symbol constellations.
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Fig. 2. Conventional architecture for joint blind equalization

via CMA and carrier recovery.



Such is not the case with RECBEQ, which is sensitive to the phase orientation of the signal constella-
tion. Through extensive testing, we have discovered that the RECBEQ algorithm, Eq. (10), can acquire
a rotating rectangular constellation but without the same level of precision that would be achieved if the
constellation were static. This led us to develop the modified architecture depicted in Fig. 3. Here the
input to the RECBEQ equalizer is phase corrected by the PLL output, which again is driven by symbol
decisions based directly on the equalizer output. In this way, RECBEQ initially equalizes the rotat-
ing constellation to such an extent that the PLL can lock up and finalize the joint equalization/carrier
recovery process.

V. Simulation Results

To demonstrate its extremely rapid convergence for input QAM constellations, we present in Fig. 4
a simulated convergence curve produced by the RECBEQ algorithm?® as configured in Fig. 3. For this
example, the input constellation was 16-QAM, transmitted at 2400 symbols/s, with a 1-Hz carrier offset,
and the multipath channel was based on that used in [3]. In addition, in Fig. 4 corresponding learning
curves are presented for CMA and a variant of CMA [14], which is also insensitive to phase rotations of
the input signal constellation. As is seen, RECBEQ yields the fastest convergence (within 20 x 512 =
10,240 symbols) as compared with the phase insensitive techniques, clearly illustrating the potential of
the new blind equalization technique. Note that the convergence curves (mean-squared “slicing” error in
decibels versus symbols processed) for all algorithms exhibit a dual plateau effect. At the first plateau
(mean-squared error (MSE) ~ —12 dB), the equalizers have started to settle down, but the data-directed
PLL has not yet locked on to the channel. Once the PLL has converged, the MSE approaches the
second and final plateau (MSE ~ —30 dB). At this point, we can switch to decision-directed equalization
if desired. Other higher-order constellations (e.g., 256-QAM) have been tested and clearly exhibit the
superior performance of the RECBEQ algorithm.

MSE Error
| E—
y(n) l z(n) q(n) §(n)  (Output Symbol
Symbol put sy
P Equalizer P> De)cl:ri‘;io%s p Decisions)

PLL

e10(n)

/\‘ M <

Error
N -l
Computation

Fig. 3. New architecture for joint blind equalization
via RECBEQ and carrier recovery.

3With s = 8 in Eq. (10).
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Fig. 4. Equalizer convergence curves for 16-QAM constellations correspond-
ing to RECBEQ (028rect), CMA, and a variant of CMA (028) [14].

VI. Conclusions

In this article, a new blind equalization algorithm (RECBEQ) has been presented which is particularly
well-suited for blindly equalizing rectangular constellations. The algorithm works with static or rotating
constellations. In the latter case, a data-directed PLL must be incorporated with the equalizer contained
inside the PLL. Note that in general the extra delay associated with the RECBEQ tapped delay line
will limit the capture range of the PLL [15], but this can be compensated by carrier sweep acquisition.
We have also presented an asymptotic performance analysis for the new equalizer. These results provide
some guidance as to the expected performance of the new algorithm for a given symbol constellation
and in fact were supported by simulation results presented for a 16-QAM constellation. Finally, we note
that the time domain equalization algorithm presented here may be readily extended to blind adaptive
arrays [16].
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